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Abstract. In this paper we introduce a new notion of infine nonsmooth functions and give several
characterizations of infineness property. We prove alternative theorems with mixed constraints (i.e.,
inequality and equality constraints) being described by invex-infine nonsmooth functions. We estab-
lish a necessary and sufficient condition for a solution of a vector optimization problem involving
mixed constraints to be a properly efficient solution.

1. Introduction

During the last 20 years invexity is known as a concept which is a geralization
of the convexity property and which can be used to extend the sufficiency of the
Kuhn–Tucker conditions and the duality theory of the class of convex programs
to a more general class of optimization problems. This invexity idea was first
introduced by Hanson [14] for differentiable functions and was generalized to
nonsmooth functions [8, 20] and multifunctions [12, 22, 23]. Invexity was also
weakened in order that it can be served as a necessary optimality condition [15, 16,
24] or a characterization of problems where every Kuhn–Tucker point is a global
minimizer [18, 25]. Invex functions are also useful for alternative theorems [2].

It is worth noticing that the proof of sufficiency of the Kuhn–Tucker conditions
is based on the fact that the invexity of constraint functions gj implies that of
λjgj where λj are Kuhn–Tucker multipliers associated to gj . This fact is true for
inequality constraints since in this case all λj are nonnegative. Unfortunately, it
fails to hold for equality constraints since λj are not necessarily nonnegative. Thus
the usual invexity notion is suitable for optimization problems with inequality con-
straints, but it is not useful for problems with equality constraints. The aims of this
paper are:

1. To introduce a class of locally Lipschitz functions, called the class of infine
functions, which is a subclass of invex functions but which is appropriate
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for optimization problems with equality constraints. (The reason for using the
terminology “infine functions” is given in Remark 3.2 of Section 3.)

2. To prove alternative theorems for systems involving mixed constraints: a geo-
metric constraint x ∈ S (S being a closed convex subset which may not coin-
cide with the whole space R

n) and several inequality and equality constraints
given by nonsmooth invex and infine functions.

3. To show that alternative theorems, and the invexity and infineness ideas can be
applied to finding properly efficient points of nonsmooth problems of vector
optimization involving mixed constraints.

The organization of this paper is as follows: in Section 2 some concepts and
facts from Nonsmooth Analysis are collected. In Section 3 a new concept of infine
functions on S at x0 ∈ S is introduced. Several sufficient conditions for infineness
are given. It is shown that all they are equivalent conditions and become necessary
conditions for infineness if the Clarke tangent cone of S at x0 is a subspace. Ex-
amples of infine functions are provided. In Section 4 two alternative theorems are
given for locally Lipschitz vector-valued maps f, g and h with suitable invexity
and infineness properties. The first one deals with system

g(x) � 0, h(x) = 0, x ∈ S (1.1)

and the second one differs from the first in that a strict inequality f (x) < 0 is added
to system (1.1). The second alternative theorem includes as a special case a known
result [2] where h is absent. Our proof is simpler and quite different from that of
[2]. An alternative theorem is applied to characterizing properly efficient points of
a vector optimization problem of map f subject to constraints (1.1).

2. Preliminaries

Let R
n be an Euclidean space. For x = (x1, x2, ..., xn) ∈ R

n and y = (y1, y2, ..., yn) ∈
R

n we will use the following notation:

x = y ⇔ xi = yi, for all i;
x < y ⇔ xi < yi, for all i;
x � y ⇔ xi � yi, for all i;

x � y ⇔ x � y and x �= y.

Let f : R
n → R be a locally Lipschitz function, that is, for any z ∈ R

n, there
exist α > 0, β > 0 such that for any x, x′ ∈ R

n with ‖ x − z ‖< α, ‖ x′ − z ‖< α,

| f (x) − f (x′) |� β ‖ x − x′ ‖, and let x0 ∈ R
n. Then the Clarke directional

derivative of f at x0 in the direction v is defined by

f 0(x0, v) = lim sup
y→x0 λ↓0

f (y + λv) − f (y)

λ
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and the Clarke subdifferential of f at x0 is defined by

∂f (x0) = {ξ ∈ R
n : f 0(x0, v) �

〈
ξ, v

〉 ∀v ∈ R
n},

where
〈·, ·〉 denotes the inner product in R

n.
It is well known [4] that for any v ∈ R

n

f 0(x0, v) = max
ξ∈∂f (x0)

〈
ξ, v

〉
(2.1)

and ∂f (x0) is a nonempty compact convex subset of R
n. Also,

−∂f (x0) = ∂(−f )(x0). (2.2)

Let S be a closed subset of R
n and x0 ∈ S. The Clarke [4] tangent cone to S at

x0 is defined by

TS(x0) := {v ∈ R
n : d0

S(x0, v) = 0}, (2.3)

where dS(x) = infz∈S ‖ z − x ‖, and the Clarke [4] normal cone to S at x0 is
defined by

NS(x0) := {w ∈ R
n : 〈v,w

〉
� 0 ∀v ∈ TS(x0)}. (2.4)

A subset A ⊂ Rn is said to be a cone if λx ∈ A for all x ∈ A and λ � 0. A cone
which is a convex set is said to be a convex cone. For any nonempty subset A ⊂ Rn

denote by cone A the intersection of all convex cones containing A. It is easy to
check that cone A is a convex cone consisting of all points of the form

∑m
i=1 λixi

where m is a positive integer, xi ∈ A and λi � 0. Also, cone A = cone (co A)

where co A stands for the convex hull of A. When A is a convex set, cone A =
{λx : λ � 0, x ∈ A}. It is proved in [4] that

NS(x0) = cl cone ∂dS(x0) (2.5)

where cl A denotes the closure of A. For any nonempty subset A ⊂ R
n denote by

affA the affine hull of A. This is the intersection of all affine sets containing the
set A. It is known [21] that affA consists of all points of the form

∑m
i=1 λixi with∑m

i=1 λi = 1 where m is a positive integer, xi ∈ A and λi ∈ R (λi may not be
nonnegative).

For each i = 1, 2, ..., m let Ai be a nonempty compact convex set of R
n and βi

a real number. Then Ai × {−βi} is a subset of R
n × R. Let

ϕi(t) = max
ξ∈Ai

〈
ξ, t

〉
. (2.6)

PROPOSITION 2.1. System

ϕi(t) < 0 (i = 1, 2, ..., m′), (2.7)

ϕi(t) � 0 (i = m′ + 1,m′ + 2, ..., m) (2.8)
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has a solution t ∈ Rn if and only if

0 /∈ co
m′⋃
i=1

Ai + cl cone
m⋃

i=m′+1

Ai. (2.9)

PROPOSITION 2.2. System

ϕi(t) � βi, i = 1, 2, ..., m, (2.10)

has a solution t ∈ Rn if and only if

(0, 1) /∈ cl cone
m⋃

i=1

[
Ai × {−βi}

]
(2.11)

(0 being the origin of R
n).

The proof of Propositions 2.1 and 2.2 can be found in [24, 25]. For reader’s con-
venience let us give a sketch of this proof. We start by Proposition 2.1. If (2.9)
holds then the intersection of the compact convex set

−co
m′⋃
i=0

Ai

and the closed convex set

cl cone
m⋃

i=m′+1

Ai

is empty. Using a separation theorem we can find a vector t ∈ R
n which is a

solution of system (2.7), (2.8). Conversely, if the last system has a solution, then
taking account of formulas (2.6) we see that the above intersection is empty. In
other words, condition (2.9) holds.

Proposition 2.2 can be deduced from Proposition 2.1. This is possible since
the consistency of the nonhomogeneous system (2.10) is equivalent to that of a
homogeneous system of the kind (2.7), (2.8) where m′ = 1, A′

1 = {(0,−1)} and
A′

i = Ai × {−βi} for i �= 1, and the variable ξ ∈ R
n is replaced by an extended

variable ξ ′ = (ξ, r) ∈ R
n × R.

We conclude this section by an elementary result which will be needed later on.
Let H be a nonempty compact convex set of R

n and β a real number.

PROPOSITION 2.3. Let

Ê = cone
[( m⋃

i=1

[
Ai × {−βi}

])⋃(
H × {−β})], (2.12)

E =
⋃
a∈A

cl cone
[( m⋃

i=1

[{ai} × {−βi}
])⋃(

H × {−β})], (2.13)
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where a = (a1, a2, ...am) ∈ A := A1 × A2 × · · · × Am. Then cl Ê = cl E. If, in
addition, Ê is closed then Ê = E.

Proof. Since for all ai ∈ Ai, i = 1, 2, ..., m,

cone
[( m⋃

i=1

[{ai} × {−βi}
])⋃(

H × {−β})] ⊂ Ê

we have

E ⊂ cl Ê. (2.14)

On the other hand,

Ê =
⋃
a∈A

cone
[( m⋃

i=1

[{ai} × {−βi}
])⋃(

H × {−β})] ⊂ E. (2.15)

All the conclusions of Proposition 2.3 are clear from (2.14) and (2.15). �

3. Infine Functions

Let f : R
n → R be a locally Lipschitz function, S a closed subset of R

n and
x0 ∈ S. Then f is said to be infine on S at x0 if for any x ∈ S and any ξ ∈ ∂f (x0),

there exists η ∈ TS(x0) such that

f (x) − f (x0) = 〈
ξ, η

〉
. (3.1)

Using (2.2) and (3.1), we see that f is infine on S at x0 if and only if −f is
infine on S at the same point x0. When S = R

n, then TS(x0) = R
n, and hence f

is infine on R
n at x0 if and only if for any x ∈ R and any ξ ∈ ∂f (x0), there exists

η ∈ R
n such that

f (x) − f (x0) = 〈
ξ, η

〉
.

When f is of class C1, then the equality (3.1) reduces to the following form:

f (x) − f (x0) = f ′
x0

η

where f ′
x0

is the Fréchet derivative of f at x0.
Observe that in the above definition if S is a neighbourhood of x0 then (TS(x0) =

R
n and) infineness is understood in the local sense; and if S is the whole space R

n

then (TS(x0) = R
n and) infineness is understood in the global sense. Therefore, the

introduction of the subset S in the above definition is useful since it gives a unified
approach to local and global infineness. A similar situation can be found in the case
of invexity [19].
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Observe also that in [9, 10] Craven introduced a notion of cone-invexity of a
nonsmooth vector-valued function f : R

n → R
p with respect to a given cone of

R
p. For a special case where p = 1 and the mentioned cone coincides with the

origin of the real line R, this notion means that there exists a map η : R
n → R

n

such that

∀ξ ∈ ∂f (x0) : f (x) − f (x0) = 〈
ξ, η(x)

〉
.

The difference between this notion of Craven and our infineness definition is that
Craven requires that, for each x ∈ R

n, the point η(x) satisfying the just written
equality must be the same for all ξ ∈ ∂f (x0) while in our infineness definition η

depends not only on x but also on ξ ∈ ∂f (x0). Thus, the class of infine functions is
larger than the class of cone-invex functions applied to the above special case. The
function introduced in Example 3.1 below is infine, but it is not cone-invex.

Now we characterize infine functions.

PROPOSITION 3.1. Let f : R
n → R be a locally Lipschitz function and S a

closed subset of R
n. Consider the following conditions:

(a) f is infine on S at x0 ∈ S;
(b) 0 ∈ ∂f (x0) + NS(x0) − NS(x0) implies that f is constant on S; and
(c) 0 ∈ (∂f (x0) + NS(x0))

⋃
(∂f (x0) − NS(x0)) implies that f is constant on

S.

Then (b) ⇒ (c) ⇒ (a); and (a) ⇒ (b) if TS(x0) is a subspace of R
n.

Proof. (b) ⇒ (c) : It is clear since 0 ∈ NS(x0).
(c) ⇒ (a) : If f is constant on S, f is infine on S at x0 with respect to η ≡ 0.

If f is not constant on S, then by condition (c)

0 /∈ ∂f (x0) + NS(x0) (3.2)

and

0 /∈ ∂f (x0) − NS(x0). (3.3)

From (3.2) and a separation theorem, there exists t ∈ R
n such that

0 > max
ξ∈∂f (x0)

〈
ξ, t

〉+ sup
y∈NS(x0)

〈
y, t

〉
. (3.4)

If t /∈ TS(x0), there exists y′ ∈ NS(x0) such that 〈t, y′〉 > 0. This means that the
right-hand side of (3.4) may tend to +∞. This is a contradiction. Hence t ∈ TS(x0).
Moreover, supy∈NS(x0)

〈y, t〉 = 0. So, we have〈
t, ξ

〉
< 0 for any ξ ∈ ∂f (x0). (3.5)
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Similarly, from (3.3) there exists t ′ ∈ R
n such that

0 > max
ξ∈∂f (x0)

〈
t ′, ξ

〉+ sup
y∈NS(x0)

〈
t ′,−y

〉
.

Thus −t ′ ∈ TS(x0) and〈− t ′, ξ
〉
> 0 for any ξ ∈ ∂f (x0). (3.6)

Now take x ∈ S.

If f (x)−f (x0) = 0, we set η = 0 for any ξ ∈ ∂f (x0), and then f (x)−f (x0) =〈
ξ, η

〉
for any ξ ∈ ∂f (x0).

If f (x) − f (x0) < 0, then for any fixed ξ ∈ ∂f (x0), we can choose α > 0 such
that

〈
αt, ξ

〉 = f (x) − f (x0), which is possible by (3.5). Setting η = αt ∈ TS(x0),
we have f (x) − f (x0) = 〈

ξ, η
〉
.

If f (x)−f (x0) > 0, then for any fixed ξ ∈ ∂f (x0) we can find β > 0 such that〈−βt ′, ξ
〉 = f (x)−f (x0), which is possible by (3.6). Setting η = −βt ′ ∈ TS(x0),

we have f (x) − f (x0) = 〈
η, ξ

〉
.

Thus f is infine on S at x0. Hence (a) holds.
(a) ⇒ (b) : Assume that f is infine on S at x0 and that TS(x0) is a subspace of

R
n. Suppose that there exist ξ ∈ ∂f (x0), y ∈ NS(x0) and y′ ∈ NS(x0) such that

0 = ξ + y − y′. (3.7)

By the infineness of f , for any x ∈ S, f (x) − f (x0) = 〈
ξ, η

〉
. Since TS(x0) is a

subspace of R
n, for any x ∈ S,

f (x) − f (x0) = 〈
ξ, η

〉 = 〈
y′ − y, η

〉 = 0.

Thus f is constant on S. �
The following proposition is useful to understand condition (b) in Proposition 3.1:

PROPOSITION 3.2. The following statements are equivalent:

(1) There exists ξ ∈ ∂f (x0) such that 0 ∈ aff(ξ + NS(x0));
(2) 0 ∈ ∂f (x0) + NS(x0) − NS(x0); and
(3) 0 ∈ co

{
(∂f (x0) + NS(x0))

⋃
(∂f (x0) − NS(x0))

}
.

Proof. (1) ⇒ (2) : Let (1) hold. Let ri ∈ R, i = 1, · · · ,m, and yi ∈ NS(x0),

i = 1, · · · ,m, be such that

1 =
m∑

i=1

ri, 0 =
m∑

i=1

ri(ξ + yi).
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Let ri = r ′
i − r ′′

i for r ′
i � 0 and r ′′

i � 0. Then we have

0 = ξ +
n∑

i=1

riyi = ξ +
n∑

i=1

(r ′
i − r ′′

i )yi

= ξ +
n∑

i=1

r ′
iyi −

n∑
i=1

r ′′
i yi

∈ ξ + NS(x0) − NS(x0).

Thus (2) holds.
(2) ⇒ (1): Let ξ ∈ ∂f (x0), y ∈ NS(x0) and y′ ∈ NS(x0) be such that (3.7) is

satisfied. Then we have

0 = 2
(
ξ + y

2

)
+ (−1)(ξ + y′) ∈ aff(ξ + NS(x0)).

So (1) holds.
(2) ⇒ (3): Let (2) hold. From (3.7), 0 = 1

2 (ξ + 2y) + 1
2 (ξ − 2y′). So, (3) holds.

(3) ⇒ (2): Let (3) hold. Then there exist nonnegative numbers li , l
′
j , and points

ξi, ξ
′
j in ∂f (x0) such that

1 =
∑

li +
∑

l′jand

0 =
∑

li (ξi + yi) +
∑

l′j (ξ
′
j − y′

j ),

where yi and y′
j are elements of NS(x0). Thus 0 ∈ ∑

liξi + ∑
l′j ξ

′
j + NS(x0) −

NS(x0). Hence (2) holds. �
REMARK 3.1. If (∂f (x0)+NS(x0))

⋃
(∂f (x0)−NS(x0)) is convex, then Propos-

ition 3.2 shows that conditions (b) and (c) of Proposition 3.1 are equivalent.

When S = R
n, then NS(x0) = −NS(x0) = {0}. So we can obtain the following

corollaries.

COROLLARY 3.1. Let f : R
n −→ R be a locally Lipschitz function. Then f

is infine on R
n at x0 ∈ R

n if and only if inclusion 0 ∈ ∂f (x0) implies that f is
constant on R

n.

COROLLARY 3.2. Let f : R
n −→ R be of class C1. Then f is infine on R

n at
x0 ∈ R

n if and only if condition f ′
x0

= 0 implies that f is constant on R
n.

Now we give an example involving a nondifferentiable infine function, which
shows that the assumption that TS(x0) is a subspace of R

n is essential in Proposition
3.1.
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EXAMPLE 3.1. Let x ∈ R, x0 = 0 and

f (x) =
{

1
2x if x � 0

x if x < 0
.

Then ∂f (x0) = [ 1
2 , 1]. Since 0 /∈ ∂f (x0), by Corollary 3.1, f is infine on S = R

at x0. Now let S = [0,∞). Then TS(x0) = [0,∞) and NS(x0) = (−∞, 0]. Taking
for any x ∈ S and any ξ ∈ ∂f (x0), η = [f (x) − f (x0)]/ξ , we have η ∈ TS(x0)

and f (x) − f (x0) = ξ · η. Thus f is infine on S at x0. Notice that for any ξ ∈
∂f (x0), 0 ∈ ∂f (x0) + NS(x0) − NS(x0) and

0 ∈ (∂f (x0) + NS(x0))
⋃

(∂f (x0) − NS(x0)).

Since f is not constant on S, (b) and (c) of Proposition 3.1 do not hold. Hence the
assumption that TS(x0) is a subspace of R

n is essential in the implication (a) ⇒ (b)

in Proposition 3.1.

EXAMPLE 3.2. Let S ⊂ R
n be a convex set. If f : R

n −→ R is of class C1

and is pseudolinear at x0 ∈ S in the sense of [3] (i.e., for any x ∈ R
n, there exists

p(x) > 0 such that f (x) − f (x0) = p(x)f ′
x0

(x − x0)), then f is infine on S at x0

with η = p(x)(x − x0) for each x ∈ R
n.

EXAMPLE 3.3. Let S be any closed subset of R
n. Let f = g ◦ h, where g :

R
m −→ R is of class C1 and is pseudolinear at h(x0), and h : R

n −→ R
m is of

class C1 such that h′
x0

(TS(x0)) = R
m. Then f is infine on S at x0. Indeed, setting

u = h(x), u0 = h(x0), we have by pseudolinearity of g that for any x ∈ S

f (x) − f (x0) = g(u) − g(u0)

= p(u)g′
u0

(u − u0)

= g′
u0

(p(u)(u − u0)),

where p(u) > 0 is a suitable number. Since h′
x0

(TS(x0)) = R
m, there is η ∈ TS(x0)

such that p(u)(u − u0) = h′
x0

η. Hence we have

f (x) − f (x0) = g′
u0

(h′
x0

η) = f ′
x0

η.

Thus f is infine on S at x0.

REMARK 3.2. Let f = g ◦ h, where g : R
m −→ R is an affine function and

h : R
n −→ R

m is of class C1 such that the Fréchet derivative h′
x0

of h at x0 ∈ R
n

is surjective. Then g is pseudolinear at h(x0) with p ≡ 1 and hence, as showed
in Example 3.3, f is infine on R

n at x0. Observe that g being affine is infine on
R

n. Thus, if h is bijective then the infineness property of the affine function g is
a property invariant to bijective coordinate transformation h. If g : R

m −→ R is
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convex and differentiable and h : R
n −→ R

m is a differentiable function such
that h′

x0
is surjective, then f is invex in the sense of Craven [6, 7]. So, the invexity

property of the convex function g is a property invariant to bijective coordinate
transformation h. Noticing this fact, Craven [6, 7] introduced the name “invexity”
which is taken from “invariant” and “convexity”. In a similar way, we used the
terminology “infine” taken from “invariant” and “affine”.

EXAMPLE 3.4. Assume that g : R
n −→ R is locally Lipschitz and h : R

n −→
R

n is of class C1 such that h′
x0

has maximal rank, where x0 ∈ R
n. Let f = g ◦h. If

g is infine on R
n at h(x0), then f is infine on R

n at x0. Indeed, if 0 ∈ ∂g(h(x0)) then
by Corollary 3.1 g is constant on R

n. Thus f is constant and hence the infineness
of f is obvious. Assume now that 0 /∈ ∂g(h(x0)). We claim that 0 /∈ ∂f (x0) and
hence f is infine on R

n at x0 (see Corollary 3.1). Indeed, Theorem 2.3.10 of Clarke
[4] shows that

∂f (x0) ⊂ h′τ
x0

∂g(h(x0))

where τ denotes the transpose. Hence if 0 ∈ ∂f (x0), then h′τ
x0

ξ = 0 for some ξ ∈
∂g(h(x0)). Since h′

x0
has maximal rank, this implies that ξ = 0, which contradicts

the assumption 0 /∈ ∂g(h(x0)).

Now, let us give two definitions of invex vector-valued functions the first of which
is a new one and the second is taken from [6, 7, 19]:

DEFINITION 3.1. Let f := (f1, f2, · · · , fm) be a vector-valued function from
R

n to R
m such that fi, i = 1, 2, · · · ,m, are locally Lipschitz, and S a closed

subset of R
n. Then f is said to be invex on S at x0 ∈ S if for any x ∈ S and

ξi ∈ ∂fi(x0), i = 1, 2, ..., m, there exists η ∈ TS(x0) such that

fi(x) − fi(x0) �
〈
ξi, η

〉
, i = 1, 2, · · · ,m.

DEFINITION 3.2. Let f := (f1, f2, · · · , fm) be a vector-valued function from
R

n to R
m such that fi, i = 1, 2, · · · ,m, are locally Lipschitz, and S a closed

subset of R
n. Then f is said to be invex on S at x0 ∈ S if for any x ∈ S, there exists

η ∈ TS(x0) such that for any ξi ∈ ∂fi(x0), i = 1, 2, ..., m,

fi(x) − fi(x0) �
〈
ξi, η

〉
, i = 1, 2, · · · ,m,

or equivalently,

fi(x) − fi(x0) � f 0
i (x0, η), i = 1, 2, · · · ,m.

Observe that in practice it is not easy to find the point η required in the defin-
itions of invexity. On the other hand, an explicit formulae of η plays no role in
applications of invexity ideas in optimization and duality theories. So, it is inter-
esting to detect invexity properties without knowning η explicitly. We will see in
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Proposition 3.3 below that this can be obtained by using Propositions 2.2 and 2.3.
Let us introduce the following sets

Ê(x) = cone
[( m⋃

i=1

[
∂fi(x0) × {−βi(x, x0)}

])⋃(
∂dS(x0) × {0})]

E(x) =
⋃

ξ∈∂f (x0)

cl cone
[( m⋃

i=1

[{ξi} × {−βi(x, x0)}
])⋃(

∂dS(x0) × {0})]
where x ∈ S, ξ = (ξ1, ξ2, ..., ξm) ∈ ∂f (x0) := ∂f1(x0) × ∂f2(x0) × · · · × ∂fm(x0)

and βi(x, x0) = fi(x) − fi(x0), i = 1, 2, ..., m.

PROPOSITION 3.3. Let f := (f1, f2, · · · , fm) be a vector-valued function from
R

n to R
m such that fi, i = 1, 2, · · · ,m, are locally Lipschitz, and S a closed subset

of R
n.

Then the following statements are true:
1. f is invex on S at x0 ∈ S in the sense of Definition 3.1 if and only if, for any

x ∈ S, (0, 1) /∈ E(x).
2. f is invex on S at x0 ∈ S in the sense of Definition 3.2 if and only if, for any

x ∈ S, (0, 1) /∈ cl E(x).
3. If f is invex on S at x0 ∈ S in the sense of Definition 3.2, then f is invex on S

at x0 ∈ S in the sense of Definition 3.1. The converse holds if for any x ∈ S0

the set

cone
m⋃

i=1

[
∂fi(x0) × {fi(x0) − fi(x)} ]+ NS(x0) × {0} (3.8)

is closed, where S0 = {x ∈ S : fi(x) − fi(x0) < 0 for some i}.
Proof. 1. Since η ∈ TS(x0) ⇔ d0

S(x0, η) � 0, Definition 3.1 is equivalent to the
fact that for any x ∈ S and ξi ∈ ∂fi(x0), i = 1, 2, ..., m, the system〈

ξi, t
〉
� βi(x, x0), i = 1, 2, ..., m,

d0
S(x0, t) � 0

is consistent, i.e. by Proposition 2.2

(0, 1) /∈ cl cone
[( m⋃

i=1

[{ξi} × {−βi(x, x0)}
])⋃(

∂ds(x0) × {0})].
Since this is true for any x ∈ S and ξi ∈ ∂fi(x0), i = 1, 2, ..., m, we derive the
validity of the first statement of Proposition 3.3.

2. Definition 3.2 is equivalent to the fact that for any x ∈ S the system

f 0
i (x0, t) � βi(x, x0), i = 1, 2, ..., m,

d0
S(x0, t) � 0
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is consistent, i.e., by Proposition 2.2 (0, 1) /∈ cl Ê(x). It remains to observe from
Proposition 2.3 that cl Ê(x) = cl E(x).

3. The implication

Definition 3.2 ⇒ Definition 3.1

is clear from the first two statements of Proposition 3.3. Now let us prove the
converse implication under the extra assumption formulated above.

Let x ∈ S \S0. Then fi(x)−fi(x0) � 0 for all i. Thus η = 0 satisfies Definition
3.2 at this point x. Suppose that f does not satisfy Definition 3.2 at x ∈ S0. Then
for any η ∈ TS(x0), fi(x) − fi(x0) < f 0

i (x0, η) for some i. Thus the system{
f 0

i (x0, t) � fi(x) − fi(x0), i = 1, · · · ,m,

d0
S(x0, t) � 0

of variable t ∈ R
n has no solution. Applying Proposition 2.2 and taking (2.1) into

account, we have

(0, 1) ∈ cl Ê(x) ⊂ cl

[
cone

(
m⋃

i=1

∂fi(x0) × {fi(x0) − fi(x)}
)

+ NS(x0) × {0}
]

.

By assumption (3.8) this yields

(0, 1) ∈ cone

(
m⋃

i=1

∂fi(x0) × {fi(x0) − fi(x)}
)

+ NS(x0) × {0} .

Thus (0, 1) ∈ cone
⋃m

i=1

[{ξi} × {fi(x0) − fi(x)} ]+ NS(x0) × {0} for some ξi ∈
∂fi(x0), i = 1, · · · ,m. This shows that

0 =
m∑

i=1

λiξi + y,

1 =
m∑

i=1

λi

(
fi(x0) − fi(x)

) + 0

for suitable λi � 0, i = 1, 2, ..., m, and y ∈ NS(x0). We claim that there does not
exist η ∈ TS(x0) such that

〈ξi, η〉 � fi(x) − fi(x0), i = 1, 2, ..., m.

Indeed, otherwise by multiplying both sides of each of these inequalities by λi and
summing up the obtained inequalities we get〈 m∑

i=1

λiξi, η
〉
� −

m∑
i=1

λi

[
fi(x0) − fi(x)

]
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or, equivalently, 〈−y, η〉 � −1. This contradicts inequality 〈−y, η〉 � 0 which is
valid since η ∈ TS(x0) and y ∈ NS(x0). Thus, f is not invex on S at x0 in the sense
of Definition 3.1. �
The following result is a direct consequence of Proposition 3.3.

COROLLARY 3.3. Let f := (f1, f2, ..., fm) be a vector-valued function from
R

n to R
m such that fi, i = 1, 2, ..., m, are of class C1, and S a closed subset

of R
n. Then Definitions 3.1 and 3.2 coincide, and the invexity of f on S at x0 is

characterized by the condition that, for any x ∈ S,

(0, 1) /∈ cl cone
[( m⋃

i=1

[{f ′
ix0

} × {fi(x0) − fi(x)}])⋃(
∂dS(x0) × {0})].

Let us observe from Proposition 3.3 that the difference between Definitions 3.1
and 3.2 is small in the sense that for any x ∈ S Definition 3.1 requires that the point
(0, 1) does not belong to E(x) while Definition 3.2 requires that this point does not
belong to the closure of the same set E(x). Observe also that if for any x ∈ S Ê(x)

is closed then the two definitions of invexity are equivalent since by Proposition
2.3 cl E(x) = E(x). We now show that in this case invexity can be characterized
by the following condition (!):[

λi � 0, i = 1, 2, ..., m; 0 ∈
m∑

i=1

λi∂fi(x0) + ∂dS(x0)
]

⇒
[ m∑

i=1

λi(fi(x) − fi(x0)) � 0 ∀x ∈ S
]
.

Indeed, since Ê(x) is closed we have cl E(x) = E(x) = Ê(x) (see Proposition
2.3). Therefore, by Proposition 3.3 each notion of invexity is equivalent to the
condition that (0, 1) /∈ Ê(x) for any x ∈ S. But the last condition is equivalent to
condition (!) and hence, our desired conclusion follows.

If invexity is understood in the global sense (i.e., if S = X) then ∂dS(x0) =
{0}. In this special case, condition (!) is equivalent to a known characterization of
invexity of Craven [11, Theorem 4]. In other words, our characterization of invexity
expressed by condition (!) is an extension of that of Craven [11, Theorem 4] to the
case where S �= R

n.

COROLLARY 3.4. If m = 1, that is f is real-valued, then the two definitions of
invexity are equivalent.

Proof. Let S0 = {x ∈ S : f (x) − f (x0) < 0} and x ∈ S0. To apply Proposition
3.3 we must show the closedness of the set

cone
[
∂f (x0) × {f (x0) − f (x)}]+ NS(x0) × {0}. (3.8)′
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Indeed, let (pj , qj ) be a sequence of elements of set (3.8)′ such that

lim
j→∞(pj , qj ) = (p, q).

We shall prove that (p, q) is also an element of set (3.8)′. Indeed, let λj � 0, ξj ∈
∂f (x0) and yj ∈ NS(x0) be such that λjξj + yj = pj and λj

(
f (x0) − f (x)

) =
qj + 0. Since qj → q and f (x0) − f (x) �= 0 we derive from the last equality that
λj → λ0 = q/[f (x0) − f (x)]. On the other hand, because of the compactness of
∂f (x0) we may assume, by taking a subsequence if necessary, that ξj converges to
some point ξ ∈ ∂f (x0). Hence yj = pj − λjξj converges to p − λ0ξ ∈ NS(x0) by
the closedness of NS(x0). Thus, p = λ0ξ + y and q = λ0

(
f (x0)− f (x)

)+ 0, with
suitable y ∈ NS(x0). This proves that (p, q) is also an element of set (3.8)′. �
Let us observe from the above discussion that the difference between Definitions
3.1 and 3.2 is small, and that by Corollary 3.4 they are equivalent in case m = 1. It
is then natural to ask if this equivalence holds for n � 2. The following example,
due to Tuan [26], gives the negative answer to this question.

EXAMPLE 3.5. Let n = m = 2 and S = R
2. Let x = (y, z) ∈ R

2, x0 =
(0, 0) ∈ R

2 and let f = (f1, f2) where f2(x) = f2(y, z) = (y2 + z2)1/2 + z

and f1 is any function of class C1 satisfying the following conditions: f1(0, 0) =
0, f1(0,−1) = −1 and f ′

1 x0
= (1, 0). As examples of f1 we can take f1(x) =

f1(y, z) = y +z2p+1 or f1(x) = f1(y, z) = y −z2p where p � 1 is a fixed integer.
We have

∂f1(x0) = {(1, 0)},
∂f2(x0) = {(u, v) ∈ R

2 : u2 + (v − 1)2 � 1}.
We claim that f is invex on S = R

n at x0 in the sense of Definition 3.1. Indeed, let
(y, z) ∈ R

n and (u, v) ∈ ∂f2(x0). Observe that f2(y, z) � |z| + z � 0 and v � 0,
and that v = 0 ⇒ u = 0. Taking account of these observations we see that the
point η = (η1, η2) where

η1 = f1(y, z),

η2 =
{

0 if v = 0,

v−1[f2(y, z) − f1(y, z)u] if v > 0,
.

satisfies the condition required in Definition 3.1.
Now, let us prove that f is not invex on S = Rn at x0 in the sense of Definition

3.2. Indeed, to prove this claim it suffices to take x = (0,−1) ∈ R
2 and show that

the system

f1(x) − f1(x0) � f 0
1 (x0, η),

f2(x) − f2(x0) � f 0
2 (x0, η)
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of variable η = (η1, η2) ∈ R
2 has no solution, where f 0

i (x0, η) = max{uη1 + vη2 :
(u, v) ∈ ∂fi(x0)} (see (2.1)). Under the assumptions of Example 3.5 this system is
of the form

−1 � η1,

0 � max{uη1 + vη2 : u2 + (v − 1)2 � 1}
and has no solution. This can be seen from the remark that for all η1 �= 0 the right
side of the last inequality is always positive.

Now we define pseudoinvex vector-valued function.

DEFINITION 3.3. Let f := (f1, f2, · · · , fm) be a vector-valued function such
that fi, i = 1, 2, · · · ,m, are locally Lipschitz, and S a closed subset of R

n. Then
f is said to be pseudoinvex on S at x0 ∈ S if

∀x ∈ S ∀ξi ∈ ∂fi(x0), i = 1, 2, . . . , m, ∃η ∈ TS(x0) ∀i[〈
ξi, η

〉
� 0 ⇒ fi(x) � fi(x0)

]
.

Roughly speaking, f is pseudoinvex on S at x0 ∈ S if each component fi is
pseudoinvex on S at x0 ∈ S with the same η for each component.

REMARK 3.3. If f := (f1, f2, · · · , fm) is invex on S at x0 ∈ S in the sense of
Definition 3.1 or Definition 3.2, then f is pseudoinvex on S at x0 ∈ S.

REMARK 3.4. By using Corollary 3.4 and a result of Phuong, Sach and Yen [19,
Theorem 4.1] we can prove that the pseudoinvexity of a real-valued function f

on S at x0 is equivalent to the invexity of f on S at x0 in the sense of Definition
3.1 or Definition 3.2. Thus, there is no distinction between pseudoinvex and invex
functions. This was shown in [1] for the case when f is a differentiable function
and S coincides with the whole space R

n.

From Remark 3.4 we see that everywhere in the formulation of the following
Proposition 3.4 the term “pseudoinvex” can be replaced by “invex”.

PROPOSITION 3.4. Let f : R
n → R be a locally Lipschitz function and S a

closed subset of R
n. Consider the following statements:

(a) f is infine on S at x0 ∈ S;
(d) −f is pseudoinvex on S at x0 and, for any x ∈ S, there exists t ∈ TS(x0)

such that

f (x) − f (x0) = f 0(x0, t); (3.9)

(e) f is pseudoinvex on S at x0 and for any x ∈ S there exists t ∈ TS(x0) such
that [− f (x)

]− [− f (x0)
] = (−f )0(x0, t).

Then (d) ⇒ (a), and (e) ⇒ (a).
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Proof. (d) ⇒ (a): Let x ∈ S and ξ ∈ ∂f (x0). Since −f is pseudoinvex on S at
x0 and −ξ ∈ ∂(−f )(x0), there exists t ′ ∈ TS(x0) such that〈− ξ, t ′

〉
� 0 ⇒ f (x) − f (x0) � 0. (3.10)

By (3.9), f (x) − f (x0) �
〈
ξ, t

〉
. If f (x) − f (x0) = 〈

ξ, t
〉
, taking η = t , we have

f (x) − f (x0) = 〈
ξ, η

〉
.

Assume that f (x) − f (x0) >
〈
ξ, t

〉
. If f (x) − f (x0) < 0, then

〈
ξ, t

〉
< 0. We can

choose α > 0 such that f (x)−f (x0) = α
〈
ξ, t

〉
, and hence letting η = αt , we have

η ∈ TS(x0)andf (x) − f (x0) = 〈
ξ, η

〉
.

If f (x) − f (x0) > 0, by (3.10)
〈
ξ, t ′

〉
> 0. We can take β > 0 such that f (x) −

f (x0) = β
〈
ξ, t ′

〉
, and hence letting η = βt ′, we have

η ∈ TS(x0)andf (x) − f (x0) = 〈
ξ, η

〉
.

If f (x)−f (x0) = 0, letting η = 0, we have η ∈ TS(x0) and f (x)−f (x0) = 〈
ξ, η

〉
.

Consequently, f is infine on S at x0.
(e) ⇒ (a): Applying implication (d) ⇒ (a) with −f instead of f , we see that

condition (e) implies the infineness of −f (and hence the infineness of f ) on S at
x0. �
REMARK 3.5. The real-valued locally Lipschitz function f satisfying (3.9) in
Proposition 3.4 may not be infine. For example, f (x) = |x| and x0 = 0.

To give a sufficient condition for the infineness property of f by means of the
pseudoinvexity of f := (f,−f ) we first establish an elementary result.

LEMMA 3.1. Let a, b, c ∈ R be such that

a + b � 0, (3.11)

a � 0 ⇒ c � 0, (3.12)

b � 0 ⇒ c � 0. (3.13)

Then

∃λ � 0 such that c = λa (3.14)

and

∃µ � 0 such that c = µb. (3.15)
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Proof. Let us prove (3.14).
If a = 0, it follows from (3.12) and (3.13) that c = 0. So, (3.14) holds.
If a > 0, then by (3.12) c � 0. So, (3.14) holds.
If a < 0, then by (3.11) b � 0 and hence, by (3.13), c � 0. So, (3.14) holds.

To prove (3.15) let us set c′ = −c and change the role of a and b. Then we have
from (3.14) that c′ = λ′b (λ′ � 0). Thus −c = λ′b and hence, c = µbwith µ =
−λ′ � 0. �
REMARK 3.6. In general, we cannot claim that λ > 0 and µ > 0. For example,
a = 1, b = 1, c = 0.

PROPOSITION 3.5. Consider the following statements:
(a) f is infine on S at x0.
(g) f := (f,−f ) is pseudoinvex on S at x0.

Then (g) ⇒ (a).
Proof. Let x ∈ S and ξ ∈ ∂f (x0). In view of (2.2) −ξ ∈ ∂(−f )(x0). By

pseudoinvexity of f̄ , there exists t ∈ TS(x0) such that〈
ξ, t

〉
� 0 ⇒ f (x) − f (x0) � 0,

and 〈− ξ, t
〉
� 0 ⇒ f (x) − f (x0) � 0.

Applying Lemma 3.1 with a = 〈
ξ, t

〉
, b = 〈 − ξ, t

〉
and c = f (x) − f (x0), we

find λ � 0 such that

f (x) − f (x0) = λ
〈
ξ, t

〉 = 〈
ξ, λt

〉 = 〈
ξ, η

〉
with η = λt ∈ TS(x0). �

REMARK 3.7. If ∂f (x0) is not a singleton, then f may be infine on R
n at x0 while

f̄ := (f,−f ) may not be invex on R
n at x0 in the sense of Definition 3.1. Indeed,

consider again Example 3.1. We have seen that f is infine on S = R at x0 = 0.
Now let x > 0. Take ξ̄ = 1/2, ξ = 1. Then ξ ∈ ∂f (x0) and −ξ̄ ∈ ∂(−f )(x0).

Assume that there exists η ∈ R
n such that

1/2x = f (x) − f (x0) �
〈
ξ, η

〉 = η,

−1/2x = [− f (x)
]− [− f (x0)

]
�
〈− ξ̄ , η

〉 = −1/2η.

From the just written results it follows that 2η � x � η. This is a contradiction
since x > 0. Thus f̄ = (f,−f ) is not invex on R at x0. (Observe from the diagram
given at the end of this section that f̄ is pseudoinvex on R

n at x0.)

The following propositions are useful for connecting Propositions 3.1, 3.4 and
3.5:
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PROPOSITION 3.6. Condition (c) of Proposition 3.1 implies both conditions (d)
and (e) of Proposition 3.4.

Proof. (c) ⇒ (d): It suffices to consider the case when

0 /∈ (∂f (x0) + NS(x0)) ∪ (∂f (x0) − NS(x0)). (3.16)

Indeed, otherwise, by condition (c), f is constant on S and hence condition (d)
trivially holds.

Obviously, (3.16) yields (3.2) and (3.3). The argument used in the proof of
Proposition 3.1 shows that there exist t ∈ TS(x0) and −t ′ ∈ TS(x0) such that (3.5)
and (3.6) hold. Hence f 0(x0, t) < 0 and f 0(x0,−t ′) > 0. Thus, for any x ∈ S

there exists a > 0 such that f (x) − f (x0) = af 0(x0; t ′′) = f 0(x0, at ′′) where

t ′′ =


0 if f (x) − f (x0) = 0,

t if f (x) − f (x0) < 0,

−t ′ if f (x) − f (x0) > 0.

Setting η = at ′′ we obtain η ∈ TS(x0) and f (x) − f (x0) = f 0(x0, η) (i.e., (3.9)
holds with η instead of t).

Now we prove the pseudoinvexity of −f. For all x of S and ξ ∈ ∂(−f )(x0),

take η′ = −t ′. We have
〈
ξ, η′〉 < 0 (see (3.6) and observe that −ξ ∈ ∂f (x0)). So

nothing is required for the sign of (−f )(x) − (−f )(x0) and the pseudoinvexity of
−f is established.

(c) ⇒ (e): Let us observe that condition (c) is equivalent to the following
condition

(c)′ If 0 ∈ (∂(−f )(x0)+NS(x0))
⋃

(∂(−f )(x0)−NS(x0)) then −f is constant
on S.

Hence applying implication (c) ⇒ (d) with −f instead of f , we obtain condi-
tion (e). �
PROPOSITION 3.7. Condition (c) of Proposition 3.1 implies condition (g) of
Proposition 3.5.

Proof. It is easy to see that condition (g) is equivalent to the fact that for any
x ∈ S, ξ ∈ ∂f (x0) and ξ̄ ∈ ∂(−f )(x0), there is η ∈ TS(x0) such that

f (x) − f (x0) < 0 ⇒ 〈
ξ, η

〉
< 0, (3.17)

f (x) − f (x0) > 0 ⇒ 〈
ξ̄ , η

〉
< 0. (3.18)

Now if 0 ∈ (∂f (x0) + NS(x0)) ∪ (∂f (x0) − NS(x0)), then by (c), f is constant
on S and hence, (g) holds. If (3.16) holds, then, as we showed in the proof of
Proposition 3.1, there exist t ∈ TS(x0) and −t ′ ∈ TS(x0) satisfying (3.5) and (3.6).
Hence, f 0(x0, t) < 0 and (−f )0(x0,−t ′) < 0. From this it follows that (3.17) and
(3.18) hold if for any x ∈ S, ξ ∈ ∂f (x0) and ξ̄ ∈ ∂(−f )(x0) we set

η =
{

−t ′ if f (x) − f (x0) > 0,

t if f (x) − f (x0) < 0.
�
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On the basis of the results of this section we can give a diagram for connecting
conditions in Propositions 3.1, 3.4 and 3.5.

THEOREM 3.1. The following diagram is true:

⇒ (d) ⇒
(a) “ ⇒”(b) ⇒ (c) ⇒ (e) ⇒ (a).

⇒ (g) ⇒
Here “⇒” means implication under the condition that TS(x0) is a subspace of R

n.

Thus, under the last assumption all statements (a), (b), (c), (d), (e) and (g) are
equivalent.

4. Nonsmooth alternative theorems and application to a vector optimization
problem

Let S be a nonempty closed subset of R
n, and J = {1, 2, ..., p} and K = {1, 2, ..., l}

be index sets. Let g = (g1, g2, ..., gp) and h = (h1, h2, ..., hl) be vector-valued
functions with locally Lipschitz components defined on R

n. We say that (g;h)

is invex-infine on S at x0 ∈ S if for any x ∈ S, ξ̄j ∈ ∂gj(x0) (j ∈ J ) and
=
ξ k ∈ ∂hk(x0) (k ∈ K) there exists η ∈ TS(x0) such that

gj (x) − gj (x0) �
〈
ξ̄j , η

〉
(j ∈ J ),

hk(x) − hk(x0) = 〈=
ξ k, η

〉
(k ∈ K).

If h is absent then this definition is exactly Definition 3.1 of invexity of g. If g

is absent then this definition reduces to that of infininess of each component hk of

h, with an additional requirement that, for fixed x ∈ S and
=
ξ k ∈ ∂hk(x0) (k ∈ K),

the point η ∈ TS(x0) appearing in the definition of infineness must be the same for
all components hk. Roughly speaking, (g;h) is invex-infine if the first part of this
vector-valued map (i.e., map g) is invex and the second part (i.e., map h) is infine,
with the same η.

Let us introduce the function

q(·) = max
{

max
j∈J

gj (·), max
k∈K

|hk(·)|
}

and, for x0 ∈ S, let us set

J0 = J (x0) = {j ∈ J : gj (x0) = q(x0)},
K0 = K(x0) = {k ∈ K : |hk(x0)| = q(x0)}.

Observe that one of the last two index sets may be empty, but their union must
be nonempty. We will denote by αJ0 the vector with components αj (j ∈ J0).
Similarly, gJ0 is used to denote the vector-valued function with components gj (j ∈
J0).
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THEOREM 4.1. Assume that q attains its minimum on S at a point x0 ∈ S and
(gJ0;hK0) is invex-infine on S at x0. Then either

(a) System

g(x) � 0, h(x) = 0, x ∈ S (4.1)

has a solution or
(b) There are vectors λJ � 0, µK and a real number ε > 0 such that for any

x ∈ S∑
j∈J

λjgj (x) +
∑
k∈K

µkhk(x) > ε (4.2)

but never both.
Proof. Obviously, statements (a) and (b) can not be satisfied simultanously. It

remains to prove that statement (b) holds if system (4.1) is inconsistent. Indeed,
under the last assumption q(x) > 0 for all x ∈ S. Since q attains its minimum at
x0 ∈ S, there exists ε > 0 such that

q(x0) > ε. (4.3)

By the optimality of x0, we have from Clarke [4, p. 52, Corollary] that

0 ∈ ∂q(x0) + NS(x0), (4.4)

where NS(x0) is defined by (2.4).
Setting

J ′ = J ∪ K, J ′
0 = J0 ∪ K0 (4.5)

and

gk(x) = |hk(x)| for k ∈ K, (4.6)

we see that q is the maximum of finitely many functions

q(x) = max
j∈J ′ gj (x),

and hence, we easily check that

q0(x0, x) � max
j∈J ′

0

g0
j (x0, x). (4.7)

Observe from (4.4) and (2.4) that there exists v ∈ ∂q(x0) such that
〈 − v, ξ

〉
� 0

for any ξ ∈ TS(x0). Thus, taking (2.1) into account we get

q0(x0, ξ ) � 0 for any ξ ∈ TS(x0). (4.8)
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From (4.7) and (4.8) we derive the inconsistency of the following system of convex
inequalities of variable ξ ∈ R

n

g0
j (x0, ξ ) < 0 (j ∈ J ′

0),

d0
S(x0, ξ ) � 0.

By Proposition 2.1

0 ∈ co
{ ⋃

j∈J ′
0

∂gj (x0)
}

+ cl cone ∂dS(x0) (4.9)

or equivalently, by (2.5)

0 ∈ co
{ ⋃

j∈J ′
0

∂gj (x0)
}

+ NS(x0). (4.10)

Thus, there exist vj ∈ ∂gj(x0) and λj � 0 (j ∈ J ′
0) such that∑

j∈J ′
0

λj = 1, (4.11)

−
∑
j∈J ′

0

λjvj ∈ NS(x0). (4.12)

Observe that, for k ∈ K0, gk(x0) = |hk(x0)| > 0 (see (4.6) and (4.3)). Hence, by
Clarke [4, p.42, Theorem 2.3.9] ∂gk(x0) = ak∂hk(x0) where ak := sign hk(x0).
Therefore, since J ′

0 = J0 ∪ K0 we can rewrite (4.12) as

−
∑
j∈J0

λjvj −
∑
k∈K0

µkv
′
k ∈ NS(x0), (4.13)

where µk = λkak and v′
k = akvk ∈ ∂hk(x0) for any k ∈ K0. (Observe that

ak := sign hk(x0).) By the invex-infineness of (gJ0;hK0), for any x ∈ S there
exists η(x) ∈ TS(x0) such that

gj (x) − gj (x0) �
〈
vj , η(x)

〉
(j ∈ J0), (4.14)

hk(x) − hk(x0) = 〈
v′

k, η(x)
〉

(k ∈ K0). (4.15)

Multiplying both sides of (4.14) by λj and both sides of (4.15) by µk, and summing
up the obtained inequalities and equalities we get, for any x ∈ S,∑

j∈J0

λj

[
gj (x) − gj (x0)

]+
∑
k∈K0

µk

[
hk(x) − hk(x0)

]
�

〈∑
j∈J0

λjvj +
∑
k∈K0

µkv
′
k, η(x)

〉
. (4.16)
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Making use of (4.13) and observing that η(x) ∈ TS(x0) we conclude that the right
side of (4.16) is nonnegative. Therefore, for any x ∈ S∑

j∈J0

λjgj (x) +
∑
k∈K0

µkhk(x) �
∑
j∈J0

λjq(x0) +
∑
k∈K0

λkq(x0)

= q(x0) (see (4.11))

> ε (see (4.3)).

(Observe that gj (x0) = ∣∣hk(x0)
∣∣ = q(x0) for all j ∈ J0 and k ∈ K0.) Thus (4.2)

holds, where we set λj = µk = 0 for j /∈ J0 and k /∈ K0. �
Observe that the inconsistency of system (4.1) is equivalent to the inequality
min
x∈S

q(x) > 0. Thus, by means of function q the inconsistency of a system of

inequalities and equalities reduces to a simple minimization problem of a real-
valued function on a subset S. Therefore, a necessary optimality condition of this
problem can be used as a starting point to derive a necessary condition for the
inconsistency of system (4.1). (In fact, we have seen from the above proof that a
combination of this necessary optimality condition and the invex-infineness prop-
erty yields the desired statement (b) of Theorem 4.1.) This is a starting idea to
introduce the function q in Theorem 4.1. The construction of q is also motivated
by an approach of Clarke [5] where a function similar to q is used to prove the
existence of Lagrange multiliers in an optimization problem involving inequalities
and equalities. When h is absent, q is exactly the function defined in [2] to establish
an invex Gordan Theorem. However, the approach of [2] is quite different from that
of this paper.

Observe also that

statement (b) of Theorem 4.1 ⇔ min
x∈S

q(x) > 0.

Indeed, the implication ‘⇒’ is obvious, and the converse implication is obtained
from the above proof of Theorem 4.1. Thus, the function q plays an intermediate
role in proving the following equivalence:

statement (b) of Theorem 4.1 ⇔ inconsistency of system (4.1).

Applying Theorem 4.1, we can obtain the following corollary which is very
closely related to Bohnenblust–Karlin–Shapley Theorem found in [17, p. 67].

COROLLARY 4.1. Let S be a nonempty compact subset of R
n, {gj }j∈J ′ and

{hk}k∈K ′ be (finite or infinite) families of locally Lipschitz functions such that for
any x0 ∈ S and finite subsets J of J ′ and K of K ′, the vector-valued function
(gJ ;hK) is invex-infine on S at x0. Then either

(a) System

gj (x) � 0 (j ∈ J ′), hk(x) = 0 (k ∈ K ′), x ∈ S (4.17)
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has a solution
or

(b) There are finite subsets J of J ′ and K of K ′, real numbers ε > 0, λj �
0 (j ∈ J ), µk ∈ R (k ∈ K) such that, for any x ∈ S,∑

j∈J

λjgj (x) +
∑
k∈K

µkhk(x) > ε, (4.18)

but never both.
Proof. Obviously, (a) and (b) cannot be satisfied simultaneously. Assume now

that (a) does not hold, then as in [17, p. 68], there are finite subsets J ⊂ J ′ and
K ⊂ K ′ and εj > 0 (j ∈ J ) such that system

gj (x) − εj � 0 (j ∈ J ), hk(x) = 0 (k ∈ K), x ∈ S (4.19)

has no solution. Since S is compact, applying Theorem 4.1 yields (4.18). �
REMARK 4.1. If gj are convex functions on the whole space, hk are linear func-
tions and S is a nonempty compact convex set, then all assumptions of Corollary
4.1 are satisfied. Hence under these hypotheses, if (4.17) has no solution, then
(4.18) holds. This conclusion is stronger than the corresponding conclusion of the
Bohnenblust–Karlin–Shapley Theorem in [17] which says that the inconsistency
of (4.17) implies the existence of J , K, λj and µk such that for any x ∈ S

the left side of (4.18) is only nonnegative. However, we have to use assumptions
stronger than those in [17]. Namely, we must assume that all functions gj are
convex on the whole space R

n while in [17] gj are assumed to be convex and
lower semicontinuous on S only.

Before going further let us recall some notions of [21]. Let S be a nonempty convex
subset of R

n and denote the set {y ∈ R
n : S + y ⊂ S} by 0+S. Then each direction

y �= 0 in 0+S is called [21] a direction of recession of S.
Let ψ : R

n → R be a convex function and ψ0+ a function whose epigraph
equals 0+(epi ψ), where epi ψ is the epigraph of the function ψ . Then the set{
y ∈ R

n : (ψ0+)(y) � 0
}

is called in [21] the recession cone of ψ , and each dir-
ection y �= 0 in this set is called [21] a direction of recession of ψ .

Using Theorem 4.1, we can obtain the following corollary, which is a special
case of Theorem 21.3 in [21] and tell us the relationship between Theorem 4.1 and
Theorem 21.3 in [21].

COROLLARY 4.2. Let J be a finite index set, gj (j ∈ J ) a convex function from
R

n to R and S a nonempty closed convex subset of R
n . Assume that the functions

gj have no common direction of recession which is also a direction of recession of
S. Then either

(a) System

gj (x) � 0 (j ∈ J ), x ∈ S
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has a solution
or

(b) There are λj � 0 (j ∈ J ) and ε > 0 such that for any x ∈ S∑
j∈J

λjgj (x) > ε,

but never both.
Proof. The functions gj are invex on S at every point x0 ∈ S since gj are real-

valued convex function and S is a convex set. Let q(x) = max
{
gj (x) : j ∈ J

}
for any x ∈ R

n. Then by Theorem 9.4 in [21], the function q and the set S have
no common direction of recession. So, by Theorem 27.3 in [21], the function q

attains its minimum on S. Hence, it follows from Theorem 4.1 that the conclusion
of Corollary 4.2 holds. �
Now we will give a Gordan type alternative theorem for invex-infine functions.

Let I = {1, 2, · · · ,m} , J = {1, 2, · · · , p} and K = {1, 2, · · · , l} be index
sets, and let f = (f1, f2, ..., fm), g = (g1, g2, ..., gp) and h = (h1, h2, ..., hl) be
vector-valued maps with locally Lipschitz components defined on R

n. Let S be a
nonempty closed subset of R

n. Let us set

s(·) = max

{
max
i∈I

fi(·), max
i∈J

gj (·), max
k∈K

|hk(·)|
}

.

For x0 ∈ S, let us set

I0 := I (x0) = {i ∈ I : fi(x0) = s(x0)} ,

J0 := J (x0) = {
j ∈ J : gj (x0) = s(x0)

}
,

K0 := K(x0) = {k ∈ K : |hk(x0)| = s(x0)} ,

J ′
0 = J0 ∪ K0.

DEFINITION 4.1. We say that condition (CQ) is satisfied at x0 if there do not
exist real numbers βj (j ∈ J ′

0), not all zero, such that βj � 0 (j ∈ J0) and

0 ∈
∑
j∈J ′

0

βj∂gj (x0) + NS(x0)

where we set gj = hj for j ∈ K0.
Let us observe that if J0 = ∅ then condition (CQ) means that the validity of

inclusion

0 ∈
∑
k∈K0

βk∂hk(x0) + NS(x0)

implies that βk = 0 (∀k ∈ K0). This becomes the requirement of the linear inde-
pendence of the Fréchet derivatives h′

kx0
if we assume additionally that S = Rn and

hk (k ∈ K0) are of class C1.
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If K0 = ∅ then condition (CQ) means that

0 /∈ co
{ ⋃

j∈J0

∂gj(x0)
}

+ NS(x0).

This becomes condition (CQ) used in [24] if S is an open set (which implies that
NS(x0) = {0}).

We will say that (f, g;h) is invex-infine on S at x0 if (ḡ;h) is invex-infine on
S at x0 where ḡ = (f, g) is the vector-valued map with components f1, f2, ..., fm,

g1, g2, ..., gp .

THEOREM 4.2. Assume that the function s attains its minimum on S at x0 ∈
S, (fI0, gJ0; hK0) is invex-infine on S at x0, and condition (CQ) is satisfied at x0.

Assume, in addition, that system

f (x) � 0, g(x) � 0, h(x) = 0, x ∈ S (4.20)

has at least a solution x ∈ R
n. Then either

(a) System

f (x) < 0, g(x) � 0, h(x) = 0, x ∈ S (4.21)

has a solution,
or

(b) There exist vectors αI � 0, βJ � 0 and γK such that for any x ∈ S∑
i∈I

αifi(x) +
∑
j∈J

βjgj (x) +
∑
k∈K

γkhk(x) � 0, (4.22)

but never both.
Proof. Obviously, (a) and (b) cannot be satisfied simultaneously. Assume now

that system (4.21) has no solution. Let us set ϕ(x) = maxi∈I fi(x) and consider
the problem of minimizing ϕ(x) subject to x ∈ S1 := {x ∈ R

n | g(x) � 0, h(x) =
0, x ∈ S}. Obviously, S1 �= ∅ because of the consistency of system (4.20). Since
system (4.21) has no solution, we must have

ϕ(x) � 0 ∀x ∈ S1. (4.23)

Let x0 be the point appearing in the formulation of Theorem 4.2. Observe by the
definition of s that s(x) � 0 for any x ∈ S. If x̄ is a solution of (4.20), then
obviously x̄ ∈ S1 and s(x̄) = 0. Hence minx∈Ss(x) = s(x̄) = 0. Since the function
s attains its minimum on S at x0, minx∈Ss(x) = s(x0) = 0, and hence x0 ∈ S1.

In addition, ϕ(x0) = maxi∈I fi(x0) = 0 since (4.23) holds and s(x0) = 0. Observe
also that I0 �= ∅. We have thus proved that x0 ∈ S1 and ϕ(x0) = 0. Combining
this with (4.23) shows that ϕ(·) attains its minimum on S1 at x0 with ϕ(x0) = 0.
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By Clarke [4, Theorem 6.1.1, p.228], there exist λ0 � 0, βj � 0 (j ∈ J0) and
γk ∈ R (k ∈ K), not all zero, such that

0 ∈ λ0∂ϕ(x0) +
∑
j∈J0

βj∂gj (x0) +
∑
k∈K

γk∂hk(x0) + NS(x0). (4.24)

(Observe that in our case, K0 := K(x0) = K.) By condition (CQ), λ0 �= 0 and
hence we can take λ0 = 1. On the other hand, since ϕ is defined as the maximum
of finitely many functions, we have by Clarke [4, Theorem 2.3.12, p. 47]

∂ϕ(x0) ⊂ co {∂fi(x0) : i ∈ I0} (4.25)

(I0 �= ∅ as we remarked above). Hence, by setting αi = 0 (i /∈ I0) and βj = 0 (j /∈
J0) we derive from (4.24) and (4.25) that there exist αi � 0 (i ∈ I ), βj � 0 (j ∈ J )

and γk ∈ R (k ∈ K) such that

0 ∈
∑
i∈I

αi∂fi(x0) +
∑
j∈J

βj ∂gj(x0) +
∑
k∈K

γk∂hk(x0) + NS(x0) (4.26)

where αi > 0 for at least one index i ∈ I . Thus there exist ξi ∈ ∂fi(x0)(i ∈ I ), ξ̄j ∈
∂gj(x0)(j ∈ J ) and

=
ξ k ∈ ∂fk(x0)(k ∈ K) such that

−
∑

i∈I

αiξi +
∑
j∈J

βj ξ̄j +
∑
k∈K

γk

=
ξ k

 ∈ NS(x0).

Using the invex-infineness property, we have for any x ∈ S and a suitable point
η = η(x) ∈ TS(x0)

0 �
∑
i∈I

αi

〈
ξi, η

〉+ ∑
j∈J0

βj

〈
ξ̄j , η

〉+∑
k∈K

γk

〈=
ξ k, η

〉
�
∑
i∈I

αi

[
fi(x) − fi(x0)

]+
∑
j∈J

βj

[
gj (x) − gj (x0)

]
+
∑
k∈K

γk

[
hk(x) − hk(x0)

]
.

So we have, for any x ∈ S,∑
i∈I

αifi(x) +
∑
j∈J

βjgj (x) +
∑
k∈K

γkhk(x)

�
∑
i∈I

αifi(x0) +
∑
j∈J

βjgj (x0) +
∑
k∈K

γkhk(x0).

Observing that αifi(x0) = 0 (i ∈ I ), βjgj (x0) = 0 (j ∈ J ) and γkhk(x0) =
0 (k ∈ K), we obtain (4.22) as desired. �
When g and h are absent in Theorem 4.2, system (4.20) reduces to f (x) � 0,
x ∈ S, but the consistency of this system is superfluous. Namely, we have
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THEOREM 4.3. (Invex Gordan’s Theorem, see [2])Assume that f is a vector-
valued map wih locally Lipschitz components fi (i ∈ I ) and S is a nonempty
closed subset of R

n. Assume that ϕ(x) = maxi∈I fi(x) attains its minimum on S

at x0 and fI0 is invex on S at x0 (in the sense of Definition 3.1) where I0 = {i :
fi(x0) = ϕ(x0)}. Then either

(a) System f (x) < 0, x ∈ S has a solution
or

(b) There exists αI � 0 such that, for any x ∈ S,
∑

i∈I αifi(x) � 0, but never
both.

Proof. Suppose that (a) does not hold. Since the function ϕ attains its minimum
on S at x0, it follows from Clarke [4] that

0 ∈ ∂ϕ(x0) + NS(x0).

Using (4.25), we again obtain (4.26) with αi = 0 (i �∈ I0) (where ∂gj and ∂hk are
absent) and hence by invexity of f , for any x ∈ S,∑

i∈I

αifi(x) �
∑
i∈I

αifi(x0).

Since (a) does not hold, fi(x0) = ϕ(x0) � 0 for all i ∈ I0. Thus, for any x ∈
S,
∑

i∈I αifi(x) � 0. �
REMARK 4.2. Theorem 4.3 was proved in [2] where invexity is understood in the
sense of Definition 3.2. Our proof is quite different and simpler than that of [2].

Now we will apply the Gordan type alternative theorem (see Theorem 4.2) to char-
acterizing properly efficient solutions of a vector optimization problem involving
invex-infine functions.

Consider the following vector optimization problem :

(VOP) Minimize f (x) := (f1(x), · · · , fm(x))

subject to x ∈ S1 := {
x ∈ S : gj (x) � 0 (j ∈ J ),

hk(x) = 0 (k ∈ K)} .

DEFINITION 4.2. A point x0 ∈ S1 is said to be an efficient solution of (VOP) if
there does not exist other point x ∈ S1 such that f (x) � f (x0).

DEFINITION 4.3. [13]. A point x0 ∈ S1 is said to be a properly efficient point
solution of (VOP) if it is an efficient point of (VOP) and if there exists a scalar
M > 0 such that for each i ∈ I we have

fi(x) − fi(x0)

fi′(x0) − fi′(x)
� M

for some i′ ∈ I such that fi′(x) > fi′(x0) whenever x ∈ S1 and fi(x) < fi(x0).
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THEOREM 4.4. Assume that (f, gJ0;h) is invex-infine on S at x0, where J0 =
J (x0) = {j ∈ J : gj (x0) = 0} and that condition (CQ) is satisfied at x0. Then x0 ∈
S1is a properly efficient solution of (VOP) if and only if there exist λI > 0, µJ0 � 0
and rK such that x0 ∈ S1 solves the following scalar optimization problem:

(VOP)′ Minimize s′(x), subject to x ∈ S

where s′(x) =
∑
i∈I

λifi(x) +
∑

j∈J (x0)

µjgj (x) +
∑
k∈K

rkhk(x)

Proof. Suppose that x0 ∈ S1 is a properly efficient solution of (VOP). Let M be
the positive number appearing in Definition 4.3. Then for each i ∈ I the system

fi(x) < fi(x0),

fi(x) + Mfi′(x) < fi(x0) + Mfi′(x0), i
′ �= i,

gj (x) � 0 (j ∈ J ),

hk(x) = 0 (k ∈ K),

x ∈ S

has no solution x ∈ R
n. Indeed, assume to the contrary that for some i ∈ I this

system has a solution x. Then the last three conditions in this system show that
x ∈ S1. Since x0 is an efficient point and since fi(x) < fi(x0) the index set {i′ :
fi′(x0) < fi′(x)} must be nonempty. By proper efficiency we must find an element
i′ of this index set such that

fi(x) − fi(x0)

fi′(x0) − fi′(x)
� M

or, equivalently, fi(x) + Mfi′(x) � fi(x0)+ Mfi′(x0). This contradicts the second
condition in the above system.

Let i ∈ I be any fixed index. Define

wi(x) = fi(x) − fi(x0)

wi′(x) = fi(x) + Mfi′(x) − [
fi(x0) + Mfi′(x0)

]
, i′ �= i

and ρ(x) = max
{
maxi′∈Iwi′(x), maxj∈J gj (x), maxk∈K |hk(x)|}. Then we have

ρ(x0) = 0, I0 = {
i′ ∈ I : wi′(x0) = ρ(x0)

} = I , J0 := {
j ∈ J : gj (x0) = ρ(x0)

} =
J (x0) and K0 := {k ∈ K : |hk(x0)| = ρ(x0)} = K. Since ∂(fi + Mfi′)(x0) ⊂
∂fi(x0) + M∂fi′(x0), and (f, gJ0;h) is invex-infine on S at x0, then (w, gJ0;h) is
also invex-infine on S at x0 where w is the vector-valued map with components
wi′ (i′ ∈ I ). Since wi′(x0) = 0 (i′ ∈ I ), gj (x0) � 0 (j ∈ J ) and hk(x0) = 0 (k ∈
K), then the system

w(x) � 0, g(x) � 0, h(x) = 0, x ∈ S

has at least one solution. Thus all the assumptions of Theorem 4.2 are satisfied.
Hence, there exist αi

i′ � 0 (i′ ∈ I ), βi
j � 0 (j ∈ J ) and ri

k ∈ R (k ∈ K) such that
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i′∈I αi

i′ = 1 and for any x ∈ S∑
i′∈I

αi
i′wi(x) +

∑
j∈J

βi
j gj (x) +

∑
k∈K

ri
khk(x) � 0.

Notice that βi
jgj (x0) = 0 (j ∈ J ) and ri

khk(x0) = 0 (k ∈ K) (for this, see the
proof of Theorem 4.2). Thus we have for any x ∈ S

fi(x) + M
∑
i′ �=i

αi
i′fi′(x) +

∑
j∈J

βi
jgj (x) +

∑
k∈K

ri
khk(x)

� fi(x0) + M
∑
i′ �=i

αi
i′fi′(x0) +

∑
j∈J

βi
j gj (x0) +

∑
k∈K

ri
khk(x0) (4.27)

Summing (4.27) over i ∈ I , we see that, for all x ∈ S,∑
i′∈I

λi′fi′(x) +
∑
j∈J

µjgj (x) +
∑
k∈K

rkhk(x)

�
∑
i′∈I

λi′fi′(x0) +
∑
j∈J

µjgj (x0) +
∑
k∈K

rkhk(x0) (4.28)

and

µjgj (x0) = 0, j ∈ J (4.29)

where

λi′ = 1 + M
∑
i �=i′

αi
i′,

µj =
∑
i∈J

βi
j ,

rk =
∑
i∈J

ri
k.

Hence x0 ∈ S1 is an optimal solution of (VOP)′.
Conversely, suppose that x0 ∈ S1 is an optimal solution of (VOP)′. Then we

have, for any x ∈ S1,∑
i∈I

λifi(x0) =
∑
i∈I

λifi(x0) +
∑

j∈J (x0)

µjgj (x0) +
∑
k∈K

rkhk(x0)

�
∑
i∈I

λifi(x) +
∑

j∈J (x0)

µjgj (x) +
∑
k∈K

rkhk(x)

�
∑
i∈I

λifi(x).
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Thus, by Theorem 1 in [13], x0 is a properly efficient solution of (VOP). �
Now, we will give a necessary optimality condition for a properly efficient solution
of (VOP):

COROLLARY 4.3. Let x0 ∈ S1 be a properly efficient solution of (VOP). Assume
that (f, gJ0;h) is invex-infine on S at x0, where J0 = J (x0) = {j ∈ J : gj (x0) =
0}, and that condition (CQ) is satisfied at x0. Then there exist λI > 0, µJ � 0 and
rK such that

0 ∈
∑
i∈I

λi∂fi(x0) +
∑
j∈J

µj∂gj (x0) +
∑
k∈K

rk∂hk(x0) + NS(x0) and

µjgj (x0) = 0(j ∈ J ).

Proof. By Theorem 4.4 x0 must be an optimal solution of Problem (VOP)′. To
complete the proof it suffices to apply a result of Clarke [4, p.52, Corollary] and to
set µj = 0 for j /∈ J (x0). �
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